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Approximate matrix equations of the kinetics of nonequimolar mass transfer accom- 
panied by chemical reaction between the components through a moving liquid film are 
obtained. 

In practice, processes of mixture separation complicated by chemical reaction between 
components are encountered [I, 2]. The modeling of mass transfer in multiphase chemically 
active systems is complicated to a considerable extent because of the presence of reactions 
occurring in the liquid phase. 

Mass transfer in multicomponent nonideal liquid mixtures is currently described using 
generalized Stefan--Maxwell equations in matrix form [3]. With nonequimolar mass transfer, 
the component fluxes may be determined from a difference scheme [4, 5], which allows the 
linearized matrix diffusion equation to be transformed to a system of independent scalar equa- 
tions in terms of pseudocomponents. Therefore, the differential equations of nonequimolar 
diffusion of pseudocomponents for the physical model of mass transfer under consideration 
are solved by methods developed for binary mixtures [6]. Then, by means of inverse trans- 
formation, a general matrix form of the kinetic equation of mass transfer may be obtained. 

Below, matrix equations are derived for calculating the molar fluxes of individual com- 
ponents through the boundary surfaces of a motionless film of chemically active liquid. 

Consider the steady mass-transfer process at constant temperature and pressure in an 
n-component liquid mixture from the core of the phase to the phase boundary. It is assumed 
that, in diffusion through a thin liquid film of thickness 6 forming at the phase interface, 
all the components enter into chemical reaction. Then the material-balance equation for the 
components may be written in the form 

dN~ 
- - -  =r~ ,  i =  l ,  2 . . . .  , n, 1) 

dz 

where 

Ni = J~ 3- x~N~; 2) 

n 

~ ] ~  = 0. 3) 
i = l  

E q u a t i o n s  (2) and  (3)  e s t a b l i s h  a r e l a t i o n  b e t w e e n  t h e  t o t a l  f l u x e s  Ni r e l a t i v e  to  t h e  m o t i o n -  
l e s s  r e f e r e n c e  f r a m e  and  t h e  d i f f u s i o n a l  f l u x e s  J i  r e l a t i v e  t o  a r e f e r e n c e  f r a me  m o v i n g  a t  
t h e  mean m o l a r  v e l o c i t y .  Wi th  e q u i m o l a r  mass  t r a n s f e r ,  t h e  t o t a l  mass f l u x  of  t h e  m i x t u r e  
N t = 0.  I f  t h e r e  i s  no c h e m i c a l  r e a c t i o n ,  t h e  r e a c t i o n  r a t e  r i = 0 ,  and  t h e  f l u x e s  N i a r e  
constant over the film thickness. 

In accordance with the generalized Stefan--~xwell equation, the following relation may 
be written [3] 

where 

(J) = - - c  [D~] d (x____~) 
dz 

(4) 

[D~] = [A]-~ IF]; (5) 
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1 
C = (6) 

2 x+V~ 

The elements of the matrix [A] and the thermodynamic-factor matrix [F] are determined from 
the formulas 

r u = s i j _ ~  x~ Oln?~ , i, ] - - 1 ,  2 . . . . .  n - - l ;  (7)  
xj a In xj 

t t  

A u -  xi ~ xj 
D~,~ + j ~  , i =  1, 2, . . . ,  n - - 1 ;  (8)  

D~j 

A, . f=xi(  l ] ), i, ]=  ], 2, . . . ,  n - - l ,  i=/=]. (9)  
Din Dij 

The q u a n t i t i e s  Di j  = D j i ,  i ,  j = 1, 2 , . . . , n  -- 1, i x j ,  may b e  e s t i m a t e d  f r o m  t h e  m o l e c u l a r -  
diffusion coefficients of binary mixtures [7]. The elements of matrix [D x] are often cal- 
culated using the method of [8], which is based on the principle of corresponding states. 
Usually in practical calculations, the matrix [Dx] and the total mixture density c are cal- 
culated from the mean composition and taken to be constant. 

Substituting Eq. (4) into Eq. (2) and differentiating the result with respect to z, an 
(n- 1)-dimensional matrix equation is obtained 

d (N) = - - c  [D A d* ( x )  dN t d (x) 
dz dz ~ + ~ (x) + N, - -  ( 1 o) 

whose solution demands a knowledge of the specific dependence of the chemical reaction rates 
on the mixture composition. 

Many chemical processes from beginning to end and most over some small interval may be 
satisfactorily described by linear systems in the form of monomolecular or pseudomolecular 
reactions, proceeding for a three-component mixture, for example, by the scheme [9] 

AI ~ A~ 
k~2 ha2 

A2~=A3 (11) 
h~a his 

A3 ~ At. 
hsl 

For a reaction of the type (11) 

dz ri = O. 
i = I  ~ = t  

It follows from Eq. (12)  that the overall molar flux of the mixture is independent of z: 

(12) 

2 2 X Nl i= Nbi = N~ = Nt = const. ( 1 3) 
i = l  i = 1  ~=1 

The kinetic equations of the chemical reactions occurring according to the scheme in 
(11) may be written in (n -- 1)-dimensional matrix form 

(r) = c [K](x) + c(q), (14)  

where the elements of the square matrix [K] and column (q) are determined from the formulas 

~kj~--k~,, ,  i =  1, 2, . . . ,  n - - l ;  K i ~ = - -  ( 1 5 )  

K i i = k i y - - k i n ,  i, ] =  1, 2 . . . . .  n - - l ,  i--l=]; (16) 
ql = k~,~, i = 1, 2 . . . . .  n - - 1 .  ( 1 7 )  

The matrix [K] is a nondegenerate matrix, the roots of whose characteristic equation are al- 
ways less than zero [10]. 
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The equation of nonequimolar diffusion --Eq. (10) -- is written in the following form, 
taking account of Eqs. (I), (13), and (14) 

- - c  [D:r d~ (x) -t- Nt d (x) c [K](x)  = c (q). ( 1 8 )  
dz ~ dz 

The conditions under investigation, in which linear Eq. (18) contains two nondiagonal 
matrices of kinetic coefficients [Dx] and [K] in the general case, may be transformed to a 
system of independent scalar equations. 

The matrix [Dx] the roots of whose characteristic equation are different, may always 
be reduced to diagonal form using the matrix of intrinsic directions [P] [4]: 

[P]-~ [DxI[P] = [--D.~ ( 1 9 )  

The characteristic numbers D~i are larger than zero. 

In the coordinate system defined by the linear transformation 

(x') = [P I - '  (x), (20)  

Eq. (18 )  is rewritten in the following form, taking account of Eq. (19) 

o d 2 (x')  d (x')  ( 21 ) 
--cV--Dx__3 dz 2 + Nt  dz c[KP](x')  = c[P]- i (q) ,  

where 

[ K P I = [ P ] - i [ K ] [ P ]  . ( 2 2 )  

The characteristic polynomial of the matrix is unchanged in all nonsingular transformations 
of the coordinate system 

det  { [ P ] - I  [K][P]  - -  K ~ F - I _ j }  = det  {[K] - -  K ~ F- l__I} .  ( 2 3 )  

Therefore, the characteristic numbers of the matrix [KP] are equal to the characteristic 
numbers of the matrix [K], and the matrix [KP] may always be reduced to diagonal form 

[R]-I[Kp][R] = F K ~  ( 2 4 )  

using the matrix of intrinsic directions [R]. Introducing the second auxiliary coerdinate 
system 

(x") = [R ] - i (x ' ) ,  ( 2 5 )  

Eq. (21) is rewritten, taking account of Eq. (24) 

d 2 (x") @ N, d (x") c [--K~ (x") = c (q"), ( 26 ) D O 
- - c [ R I - I F  - . _ I [ R ]  dz ~ dz 

where 

(q") = [ R ] - '  [P]-~ (q)- ( 2 7 )  

H e n c e  i t  f o l l o w s  t h a t  t h e  m a t r i x  e q u a t i o n  o f  n o n e q u i m o l a r  m u l t i e o m p o n e n t  d i f f u s i o n  w i t h  c h e m -  
i c a l  reaction -- Eq. (18) -- for the general case of mass transfer cannot be written in the 
form of a system of independent scalar equations, since the characteristic numbers Dx~ are 
different, and [R] is a nondiagonal matrix. This representation is possible if the fellow- 
ing condition is satisfied with good approximation 

JR] -~ F-D~~ [R] ~ i'-"D,n_.._l, (28)  

i.e., when the cross coefficients of the square matrix [R]-Ir--DO~I[R] may be neglected. 
The approximate solution is written on the assumption that Eq. (28) holds. Then diffu- 

sion with a chemical reaction may be described by a system of independent equations 

-76- c + N~---s ,~K~ D,~ ~o i x;---- c '  q'~, - -  - - 7 U -  
~xi (29) 

i----- 1, 2 . . . .  , n - - l ,  

with the boundary conditions 

when z =  0 11 = O, core o fphase  (x')  = (x'b); 

when Z = 8 !" I - -  | ,  phase boundary, (X") ----- (X~). 
(3o) 
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In the latter equations, the mass-transfer coefficients of the individual components are 
introduced 

~ i  = cDmt , ~ =  1, 2 . . . . .  n - - l ,  
8 (31) 

which may be determined from the criterial equation of binary mixtures. Equation (31) is 
physically meaningful if all the coefficients Dmi are larger than zero. When this require- 
ment is satisfied, the characteristic equation corresponding to any differential equation of 
the system in Eq. (29) has the real roots 

r , V , li,,z = --~" : : t zV~- -~ -  ) -t- ~,, (32) 

where 

N, ~ = __D~K o . 
r ~o , (33) 

Then each equation of the system in Eq. (29) with the boundary conditions in Eq. (30) has 
the following solution: 

" l qi' ~[e ~'+~i'~ e ~i~+~i'~) ---(x~i + q'~ ~(e~n - - e  ~i'~) ] ,  

(34) 

i = 1 , 2  . . . . .  n - - 1 .  

The diffusional fluxes relative to the reference frame moving at the mean molar velocity 
through the boundary surfaces of the liquid film may be calculated from the expression 

d (x) I 
(Jb'/) = --c [Dx] --dz Iz=6~=~ (35) 

or in the coordinates transformed according to Eqs. (20) and (25) 

f_ao_j d(x") I o (36) ( g , , ) = -  

The subscript b denotes the diffusional flux through the surface corresponding to the dimen- 
sionless coordinate q = O (the core of the phase) the subscript I denotes q = I (the boundary 
of the immiscible phases). 

Differentiating Eq. (34) with respect to D and determining the gradients in Eq. (36), 
�9 II , 

the expresslon for (Jb,I) is written in the form 

(Jb, 1) ----- ~-~x O--j ~ f b , I  -- j  {(Xb) - -  ['"-/(0--']- 1 (q~')} __~--~O._j [-..-.-hb,l._._ ] {(XT) - -  f"-/(O_.j-i (q,,)}. ( 3 7) 

In calculating the flux through the phase boundary (JR), the elements of the diagonal ma- 
trices F-f1_J and F--h1_J are calculated from the formulas 

b~ expi+), i I, 2, ..., n--l; (38) [n = sh bi 

hn = ' %  -[-bi chb--'---L'i i =  1, 2, . . . ,  n - - l ,  (39) 
2 sh bt ' 

where 

bt = l / l ~ - ) ~ - } -  ~i, (40) 

and the expressions used for (J~) are 

[b~= ~i + b t _ _ c h b  i , i =  1, 2, . . . ,  n - - l ;  
2 sh b i 

h u =  shbtbi e x p ( - - - ~ L )  ' i =  1, 2, . . . ,  n--l. 

(41) 

(42) 
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Inverse transformation from the transformed physical quantities to the natural physical 
quantities by means of Eqs. (2U) and (25) allows the mass-transfer equation to be written in 

the form 

(G,,)  = [~b.zl{(Xb) § IK]-' (q)} - -  [ ~  ,l{(x,) + [K] -~ (q)}. (43)  

In Eq. (43), the square matrices of mass-transfer coefficients in the liquid are calculated 
from the formulas 

[~b.l] = [P][R] [--~--J F--fb.t--J [R]-i [p]-i, (44) 

[~,~] = IPI[R] V--~---Jl---hb,x--l[R] -~ [ P l - t  (45) 

In accordance with Eqs. (43)-(45), the rate of nonequimolar mass transfer in the phase 
is characterized by two square matrices of mass-transfer coefficients. Because of the dif- 
ference in the parameters fi and hi, these matrices are not equal. The rate of mass transfer 
without chemical reaction is characterized by a single matrix of kinetic coefficients. It is 
simple to show that, when r i = O, i = I, x,...,n, Eq. (43) written for the fluxes through the 
surface when ~ = 0, for example, transforms to the form 

(Jb) = [~]~b -- X,), (46) 

where 
=p 0 [~] [ ] [--~.__l W'-fb.._l [P] - i  , (47) 

[b~=hb~= ~ , i= I, 2, ..., n--i, (48) 
exp ~i -- 1 

which is the accurate solution of the nonequimolar-diffusion Eq. (10) for the film model [11]. 

With nonequimolar mass transfer, the fluxes of the components relative to the motionless 
reference frame are always calculated using iterative algorithms since the transfer coeffi- 
cients according to Eqs. (38)-(42), (44), and (45) depend on the total mole flux of the mix- 
ture Nt. Equation (43) is solved together with Eqs. (2) and (13). First the fluxes through 
the phase boundary Nii are found by methods of simple iteration, and then N t and Nbi are de- 
termined. The components for which the phase boundary is impermeable must be known here. The 
algorithm for numerical solution of the analogous problem was described in [11]. 

The assumption in Eq. (28) limits the region of application of the model in Eq. (43). 
The elements of the square matrix [R]-IrD~[R] must be estimated preliminarily from Eqs. (5)- 
(9), (15)-(17), (19), (22), and (24) and its structure must be investigated, which is as- 
sociated with a sufficiently large volume of computational work. However, it would be ex- 
pected that this assumption would be acceptable for many mixtures that are separable in- 
dustrially, since the diffusional interaction between the components in the liquid is often 
slight and may be neglected [8, 12]. In this case, D m = Dxi , i = I, 2,...,n -- I. For ex- 
ample, in [8], the matrix [Dx] was calculated for a significantly nonideal ternary mixture 
consisting of materials that differ strongly in physical properties. The results of the 
calculation show, on comparison with experimental data, that [Dx] is close to a diagonal ma- 
trix with equal elements. 

NOTATION 

x, concentration of component in liquid; H, flux of material relative to motionless 
reference frame; J, flux of material relative to the reference frame moving at the mean molar 
velocity; Nt, total flux of mixture; r, rate of chemical reaction with respect to the compo- 
nent; V, molecular volume of the pure component; y, activity coefficient; k, rate constant 

o characteristic number of [Dx] ; K ~ characteristic number of [K]; of chemical reaction; Dx, 
c, total molar density of mixture; 6, thickness of gas film; z, coordinate of diffusional 
path length; ~, dimensionless coordinate of diffusional path length; ~, mass-transfer coef- 
ficient; 6ij , Kronecker delta; [ ], square matrix; ~_i , diagonal matrix; (), column matrix; 
i, j, component numbers; n, number of components; I, phase boundary; b, core of liquid phase. 

I . 
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HEAT-EXCHANGE CRISIS IN THERMOSIPHON CIRCUITS 

M. K. Bezrodnyi, S. S. Volkov, 
and S. A. Khavin 

UDC 536.27 

The article discusses the analogy and distinguishing features of heat-exchange 
crises in steam-generating channels of thermosiphon circuits. A chart of the cri- 
sis phenomena in channels with natural and forced circulation is presented. 

At present various designs of two-phase thermosiphons operating on the principle of 
closed circulation circuits are widely used. Determining the limits within which these de- 
vices are able to operate requires studying the conditions under which heat-exchange crisis 
originate in two-phase streams with natural circulation of the working medium. Although there 
is a great variety of applications of the above-mentioned method of circulation, the problem 
of heat-exchange crises under the given conditions has been studied quite insufficiently. 

It is currently assumed that in circuits with natural circulation of the heat-transfer 
agent (analogously to the case of forced motion) the critical thermal loads have not only to 
be limited by crises of boiling of the first kind but also by crises of heat exchange of the 
second kind which are connected with the complete evaporation of the liquid film next to the 
wall. In addition, the known results of investigations of crises of heat exchange in vapor- 
izer circuits and evaporators indicate that there are considerable quantitative differences 
between the regularities of crisis phenomena under the given conditions; this is explained 
by a number of authors by the existence of vibrational instability and low-frequency pulsa- 
tions in the circuit. The available experimental data on crises of heat exchange in thermo- 
siphons with internal down channel also indicate that the pattern of crisis phenomena is a 
complex one. 

A promising direction in the solution of the above problem may apparently be the succes- 
sive study of the conditions of the onset of crisis phenomena in the simplest circuits with 
free convection and their comparison with the basic research of these phenomena under condi- 
tions of forced motion. At the first stage it is important to have reliable experimental 
results on crises of heat exchange where circuits with natural circulation operate in regimes 
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